Mean Field Theory in Networks

Jiatu Shi

Outline

- Introduction: an example
- Mean field theory
- Topology of networks
- The correlation of the theorys
- Summary
- Reference

Introduction:an example

Graph model plays an important role in social network analysis.
Average distance is the essential topology index of a graph.

Introduction:an example
How to calculate the average distance of an undirected and unweighted network?

$$
L=\frac{2}{n(n-1)} \sum_{i \neq j}\left(d\left(v_{i}, v_{j}\right)\right)
$$

It seems easy.
But how about the complexity?

Introduction:an example

- Dijkstra or Floyd? ------ $O\left(n^{3}\right) \rightarrow O\left(n^{2} \log n\right)$ exact but slow.
- BFS? ------ $O\left(n^{2}+n e\right) \rightarrow O\left(n^{2}\right)$ faster...
-What if $\mathrm{n} \approx 10^{9}$
$O\left(n^{2}\right)$ will not be allowed!
- How about approximation algorithm? If I select just a few nodes, 500, 5000, 50000? Hmm...It will be $O(c n)$!

Introduction:an example

- Shortage of Approximation algorithm is obvious: The accuracy.
- Then I play a game:

3 real network data[2]
nearly BA degrees distribution \#nodes $\approx 80,000$, 200,000 , 800,000
As I randomly chose more than nearly 1000 of the total nodes ε is less than 0.5%

Introduction:an example

- But suddenly I had read such a paper[3], that the average distance of a BA network can be estimated from \#nodes N and \#edges M:

$$
L \simeq \frac{\ln N-\ln \frac{m}{2}-1-v}{\ln \ln N+\ln \frac{m}{2}}+\frac{3}{2}
$$

$$
\gamma \simeq 0.5772 \quad \text { Euler constant }
$$

Amazing...

Mean field theory

- Ideal gas state equation: $\quad P V=n R T=n k T$

Mean field theory

- One of the simplest phase transition: gas and liquid.[4]
- Is phase transition point limited? Of course.

Mean field theory

- What's the paradox at the point C?

compressibility increased

Mean field theory

- A revised theory : Van der Waals equation

1. The moleculen have a certain volume. $V \rightarrow V-N b$
2. The moleculen have attraction when mutual distant. $P \rightarrow P+\left(\frac{N}{V}\right)^{2} a$

$$
\left(P+\left(\frac{N}{V}\right)^{2} a\right)(V-N b)=N k T
$$

Mean field theory

Van der Waals equation

$$
\left\{\begin{array}{l}
\left(\frac{\partial P}{\partial V}\right)_{T}=0 \\
\left(\frac{\partial^{2} P}{\partial V^{2}}\right)_{T}=0
\end{array} \Rightarrow-\left[\begin{array}{l}
T_{c}=\frac{8 a}{27 b k} \\
P_{C}=\frac{a}{27 b^{2}} \\
V_{c}=3 \mathrm{Nb}
\end{array}\right.\right.
$$

$$
\text { Let } \quad t^{\prime}=\frac{T}{T_{c}} \quad p^{\prime}=\frac{P}{P_{c}} \quad v^{\prime}=\frac{V}{V_{c}}
$$

$$
\left(P+\left(\frac{N}{V}\right)^{2} a\right)(V-N b)=N k T \quad\left(p^{\prime}+\frac{3}{v^{\prime 2}}\right)\left(3 v^{\prime}-1\right)=8 t^{\prime}
$$

Mean field theory

Van der Waals equation

$$
\frac{\rho_{l}-\rho_{g}}{\rho_{c}} \propto\left(\frac{T_{c}-T}{T}\right)^{\beta} \quad \beta=\frac{1}{2}
$$

Topology of networks[6]

- Degree distribution

$$
p_{k}=\text { The probability of the chosen node whose degree is } k
$$

- Diameter and average distance

$$
D=\max d\left(v_{i}, v_{j}\right), i \neq j \quad L=\frac{2}{n(n-1)} \sum_{i \neq j}\left(d\left(v_{i}, v_{j}\right)\right)
$$

- Clustering coefficient

$$
C_{i}=\frac{2 E_{i}}{k_{i}\left(k_{i}-1\right)} \quad E_{i}=\# \text { edges of node } i_{i}^{\prime} \text { s neighbors }
$$

Topology of networks[6]

- Regular network

$$
\begin{aligned}
& D=1 \\
& C=1
\end{aligned}
$$

$$
\begin{array}{cc}
D=\frac{3 N\binom{K / 2}{2}}{N\binom{K}{2}}=\frac{3(K-2)}{4(K-1)} & D=2-\frac{2(N-1)}{N(N-1)} \rightarrow 2(N \rightarrow \infty) \\
C=1 & C=0
\end{array}
$$

Topology of networks[6]

- ER random network
each pair of nodes has a certain probability: p, to be connected

$$
P(k)=\binom{N-1}{k} p^{k}(1-p)^{N-1-k}
$$

Notice that N is large and p is small $\binom{N-1}{k} \approx \frac{(N-1)^{k}}{k!}$

$$
\begin{aligned}
& \langle k\rangle=p(N-1) \\
& \longrightarrow \ln \left[(1-p)^{N-1-k}\right] \approx-\frac{\langle k\rangle(N-1-k)}{(N-1)} \approx-\langle k\rangle \\
& \longrightarrow P(k) \approx \frac{\langle k\rangle^{k}}{k!} e^{-\langle k\rangle} \quad \text { Possion random graph }
\end{aligned}
$$

Topology of networks[6]

- ER random network
each pair of nodes has a certain probability: p, to be connected

$C=p=\frac{\langle k\rangle}{N-1} \rightarrow 0$

$P=0.15$

C is small $\rightarrow N \sim\langle k\rangle^{D}$
$L \leq D \sim \frac{\ln N}{\ln \langle k\rangle}$

Topology of networks[6]

- WS / NW small-world network
each pair of nodes has a certain probability: p, add an edge

$$
\begin{aligned}
& C=\frac{\frac{3}{4} N K\left(\frac{1}{2} K-1\right)}{\frac{1}{2} N K(K-1)+N K^{2} p+\frac{1}{2} N K^{2} p^{2}} \\
&=\frac{3(K-2)}{4(K-1)+4 K p(p+2)} \\
& P(k)=\binom{N-1}{k-K}\left(\frac{K p}{N-1}\right)^{k-K}\left(1-\frac{K p}{N-1}\right)^{N-1-k+K} \\
& \approx \frac{(K p)^{k-K}}{(k-K)!} e^{-K p}
\end{aligned}
$$

The correlation of the theorys

- How about the L in the small-world network?

It is a pity that the L can't be exactly parsed by expression.
But there is an nearly accurate solution by mean field theory.[7]
$L=\frac{N}{K} f(N K p)$
$f(x)=\frac{2}{\sqrt{x^{2}+4 x}} \operatorname{arctanh} \sqrt{\frac{x}{x+4}}$

$\operatorname{arctanh}(\mathrm{x})=\frac{1}{2} \ln \frac{1+x}{1-x}$

The correlation of the theorys

- BA network
- The network begins with an initial connected network of monodes.
- New nodes are added to the network one at a time. Each new node is connected to existing nodes with a probability that is proportional to the number of links that the existing nodes already have.

$$
p_{i}=\frac{k_{i}}{\sum k_{j}}
$$

The correlation of the theorys

- BA network

$$
\begin{aligned}
& \frac{\partial k_{i}}{\partial t}=m \frac{k_{i}}{\sum k_{j}}=\frac{k_{i}}{2 t} \quad k_{i}(t)=m\left(\frac{t}{t_{i}}\right)^{\beta} \quad \beta=0.5 \\
& P\left(k_{i}(t)<k\right)=P\left(t_{i}>\frac{m^{1 / \beta} t}{k^{1 / \beta}}\right) \quad P\left(t_{i}\right)=\frac{1}{m_{0}+t} \\
& =1-\frac{m^{1 / \beta} t}{k^{1 / \beta}\left(t+m_{0}\right)}
\end{aligned}
$$

$$
P(k)=\frac{\partial P\left(k_{i}(t)<k\right)}{\partial k}=\frac{2 m^{1 / \beta} t}{m_{0}+t} \frac{1}{k^{1 / \beta+1}} \sim 2 m^{1 / \beta} k^{-\gamma}, \text { with } \gamma=\frac{1}{\beta}+1=3
$$

Summary

1. Studying the behavior of large and complex stochastic models by studying a simpler model.
2. Arose primarily in the field of statistical mechanics, but has more recently been applied in graphical models theory, artificial intelligence and elsewhere.
3. A zero-dimensional model, existing errors comparing with the accurate experiment. The high-order approximation being needed.

Reference

［1］Guare J．Six degrees of separation：A play［M］．Random House LLC， 1990.
［2］http：／／konect．uni－koblenz．de／networks／
［3］Fronczak A，Fronczak P，Hołyst J A．Average path length in random networks［J］．Physical Review E， 2004，70（5）： 056110.
［4］于渌，郝柏林，陈晓松．边缘奇迹：相变与临界现象［M］．北京：科学出版社，2005．7
［5］https：／／www．youtube．com／watch？v＝cSliO89x7UU
［6］汪小帆，李翔，陈关荣．网络科学导论［M］．北京：高等教育出版社， 2012.4
［7］Albert R，Barabási A L．Statistical mechanics of complex networks［J］．Reviews of modern physics， 2002，74（1）： 47.

